
Journal of Computational Physics 228 (2009) 6977–6990
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Moving mesh methods for blowup in reaction–diffusion equations
with traveling heat source q

Jingtang Ma a, Yingjun Jiang b,*

a School of Economic Mathematics, Southwestern University of Finance and Economics, Chengdu 611130, China
b Department of Mathematics and Scientific Computing, Changsha University of Science and Technology, Changsha 410076, China

a r t i c l e i n f o
Article history:
Received 18 January 2009
Received in revised form 30 May 2009
Accepted 15 June 2009
Available online 21 June 2009

MSC:
65N50
65M50
35K55
35K57

Keywords:
Blowup
Reaction–diffusion equations
Moving mesh methods
0021-9991/$ - see front matter � 2009 Elsevier Inc
doi:10.1016/j.jcp.2009.06.008

q J. Ma’s research was supported by a grant fro
211QN09014). Y. Jiang’s research was supported by

* Corresponding author.
E-mail addresses: mjt@swufe.edu.cn (J. Ma), jian
a b s t r a c t

In this paper moving mesh methods are used to simulate the blowup in a reaction–
diffusion equation with traveling heat source. The finite-time blowup occurs if the speed
of the movement of the heat source remains sufficiently low, and the blowup procedure
is not fixed at one point not like that for stationary heat source. As time goes to the blowup
time, the blowup profile converges to a stationary state. In the simulation a new moving
mesh algorithm is designed to deal with the difficulty caused by the delta function in
the traveling heat source. The convergence rates are verified and new blowup figures are
generated from the numerical experiments.
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1. Introduction

When a localized energy source such as a laser passes over the surface of a material that has combustible properties, there
is the possibility of a thermal blowup. Such problems can be modeled mathematically by a nonlinear parabolic equation with
traveling heat source (see in [10]). It is well-known that under certain conditions on the nonlinear functions and initial value,
the reaction–diffusion equations with stationary heat source have finite-time blowup solutions (see e.g. in [1]). Under the
similar conditions and with the heat source traveling, the blowup still can occur at sufficiently low traveling speed and
the blowup can be prevented if the heat source travels at high enough speed (see e.g. in [13,8–10]). This is understandable
in the sense that the heat source is moving through a medium at a high enough speed – the heat source is continually being
exposed to relatively cool surroundings, this thereby provides an enhanced ability to diffuse the supplied heat.

The aim of this paper is to develop a moving mesh algorithm for simulation of blowup in this class of reaction–diffusion
equations with traveling nonlinear heat source. In particular the following 1D problem is focused
ut � uxx ¼ dðx� x0ÞFðuðx0; tÞÞ; �1 < x <1; t > 0; ð1Þ
. All rights reserved.
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uðx; 0Þ ¼ u0ðxÞ; �1 < x <1; ð2Þ
uðx; tÞ ! 0 as jxj ! 1: ð3Þ
Here uðx; tÞ denotes the local temperature of the medium. The initial temperature u0ðxÞ is taken to be continuous with
u0ðxÞ ! 0 as jxj ! 1. The position of the heat source x0 is given by x0 ¼ x0ðtÞ and the speed by x00ðtÞ. Moreover, we assume
x0ðtÞ is sufficiently smooth with initial state x0ð0Þ ¼ 0. The nonlinear source function FðxÞ is smooth and has the properties:
FðxÞ > 0; F 0ðxÞ > 0; F 00ðxÞ > 0 for x > 0:
It is proved by Kirk and Olmstead [9] (cf. [13]) that if the speed of the movement for the heat source remains sufficiently low,
e.g.
jx00ðtÞj 6 j;
where j is a sufficiently small constant, then there exists a time T > 0 such that the blowup occurs at t ¼ T which means that
lim
t!T

maxfuðx; tÞg ! þ1.
Moving mesh methods have been of much success in the simulation of blowup in reaction–diffusion equations with sta-

tionary nonlinear heat source. The first paper on that is given by Budd et al. [4]. The moving mesh is generated by the moving
mesh partial differential equations (MMPDEs). The discretization of the physical equations and the MMPDE in space gives an
ODE system which is solved by an integration solver – DDASSL (see e.g. in [14]). The monitor function, which plays a key role
in generating moving meshes, is determined by the scaling invariance. Later Huang et al. [6] prove that the scaling invariance
is neither sufficient nor necessary, instead, the so-called dominance of equidistribution is sufficient to make the moving
mesh method work satisfactorily. More recently, Ma et al. [12] develop a moving mesh algorithm for simulation of blowup
in nonlocal reaction–diffusion equations. The readers are referred to e.g. a book [18] for the extended references on moving
mesh methods and the applications.

In this paper a moving mesh algorithm is developed to simulate the blowup with traveling heat source. The blowup pro-
file is traveling with the heat source and converges to a steady state as time approaching to the blowup time (see e.g. [8]).
The major difficulty in constructing the moving mesh algorithm is that the delta function in the right-hand side of Eq. (1)
incurs discontinuities to the solution derivatives when crossing the time-dependent curve x0ðtÞ. Motivated by the idea for
solving delta functions on fixed mesh (see e.g. in [16]), we develop accurate approximate schemes to the terms in the trans-
formed equations. Combining the approximations into the equation, we then obtain a second-order numerical scheme for
the equation. The similar ideas have been used in [11,3] for elliptic equations with fixed localized curve.

Using a time-dependent coordinate transformation xðn; tÞ, we may write
_u � @uðxðn; tÞ; tÞ
@t

����
n fixed

¼ ut þ ux _x;
and thus rewrite the original equation (1) into the following form:
_u� ux _x� uxx ¼ dðx� x0ÞFðuðx0; tÞÞ:
Notice that when x – x0, the right-hand side of the above equation vanishes. Thus we may conduct discretizations on
equation
_u� ux _x� uxx ¼ 0:
Each term in the above equation contains a jump when crossing the curve x0ðtÞ. This prevents a high accuracy. Therefore, a
smooth auxiliary function is constructed with the information of jumps to obtain accurate approximations. In consequence
an accurate moving mesh algorithm is developed. The time-dependent coordinate transformation function xðn; tÞ satisfies
the MMPDEs (see e.g. in [7]) which are derived by an equidistribution principle. Among the list of MMPDEs, due to the ease
of implementation, the labeled MMPDE4, MMPDE5 and MMPDE6 are popular to use. In this paper, the MMPDE6 is chosen for
the computation.
t ),( tx )(0 tx

))(),(( λϑλθ

x

Fig. 1. Illustration figure for definition of jumps.
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Here we introduce some notations which will be used throughout the paper. Assume u : ð�1;1Þ � ½0;1Þ ! R such that
uðx; tÞ is Lipschitz continuous on both sides of x0ðtÞ (not include x0ðtÞ). Given that a smooth curve ðhðkÞ; #ðkÞÞ crosses x0ðtÞ at
ð�x;�tÞ when k increases (see Fig. 1) and ðhð�kÞ; #ð�kÞÞ ¼ ð�x;�tÞ for a �k, we define the jump of u at ð�x;�tÞ by
½u�ð�x;�tÞ ¼ lim
e!0þ
ðuðhð�kþ �Þ; #ð�kþ �ÞÞ �uðhð�k� �Þ; #ð�k� �ÞÞÞ:
For a single-variable function gðxÞ, we define its jump when x crosses g by
x½g�g ¼ lim
e!0þ
ðgðgþ �Þ � gðg� �ÞÞ:
Without danger of confusion, we abbreviate x½g�g by ½g�g.
In next section the new moving mesh algorithm is derived. In Section 3, a number of numerical experiments are carried

out and figures are generated. Conclusions are given in the final section.
2. Moving mesh algorithm

In this section the moving mesh algorithm is carefully derived. To facilitate a better exposition, we first construct accurate
approximations to the derivatives of functions with finite jumps, and then develop the approach into the moving mesh
algorithm.

2.1. Approximation scheme

Assume that gðxÞ is a continuous function in ½a; b� and it satisfies that gðxÞ 2 C3½a;g� and gðxÞ 2 C3½g; b�, where g 2 ða; bÞ.
For a fixed mesh on ½a; b�
a ¼ x0 < x1 < � � � < xn ¼ b;
with mesh size hi ¼ xi � xi�1; ði ¼ 1; . . . ;nÞ, We investigate the accurate approximations of g0ðxiÞ and g00ðxiÞ which will be dis-
cussed by four cases.

Case 1: If g R ðxi�1; xiþ1Þ, the approximations of g0ðxiÞ and g0ðxiÞ are quite standard, i.e. forward scheme
g0ðxiÞ ¼
gðxiÞ � gðxi�1Þ

hi
þ OðhiÞ ð4Þ
or backward scheme
g0ðxiÞ ¼
gðxiþ1Þ � gðxiÞ

hiþ1
þ Oðhiþ1Þ ð5Þ
or central scheme
g0ðxiÞ ¼
gðxiþ1Þ � gðxi�1Þ

hi þ hiþ1
þ Oðhiþ1 � hiÞ þ O h2

i þ h2
iþ1

� �
; ð6Þ
and
g00ðxiÞ ¼
gðxiþ1Þ�gðxiÞ

hiþ1
� gðxiÞ�gðxi�1Þ

hi

hiþhiþ1
2

þ Oðhiþ1 � hiÞ þ O h2
i þ h2

iþ1

� �
: ð7Þ
Case 2: If g 2 ðxi�1; xiÞ, to obtain accurate approximations of g0ðxiÞ and g0ðxiÞ, we construct an auxiliary ~g on ½xi�1; xiþ1� as
follows:
~gðxÞ ¼ gðxÞ þ ðx� gÞ½g0�g þ 1
2 ðx� gÞ2½g00�g þ 1

6 ðx� gÞ3½g000�g; x 2 ½xi�1;g�;
gðxÞ; x 2 ðg; xiþ1�:

(
ð8Þ
It is easy to see that ~gðxÞ 2 C3½xi�1; xiþ1�. Thus we have accurate approximations of ~g0ðxiÞ and ~g00ðxiÞ – (4), (6) and (7) with g
replaced by ~g. From the construction of ~g in (8), we know that
~gðxiÞ ¼ gðxiÞ; ~g0ðxiÞ ¼ g0ðxiÞ; ~g00ðxiÞ ¼ g00ðxiÞ; ~gðxiþ1Þ ¼ gðxiþ1Þ
and
~gðxi�1Þ ¼ gðxi�1Þ � hi;1½g0�g þ
h2

i;1

2
½g00�g �

h3
i;1

6
½g000�g;
where hi;1 ¼ g� xi�1. Put these expressions into the approximate forms of ~g0ðxiÞ and ~g00ðxiÞ — (4), (6) and (7) with g replaced
by ~g gives that
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g0ðxiÞ ¼
gðxiÞ � gðxi�1Þ

hi
þ hi;1

hi
½g0�g þ OðhiÞ ð9Þ
or
g0ðxiÞ ¼
gðxiþ1Þ � gðxi�1Þ

hi þ hiþ1
þ hi;1

hi þ hiþ1
½g0�g þ Oðhi þ hiþ1Þ þ Oðhiþ1 � hiÞ þ O h2

i þ h2
iþ1

� �
; ð10Þ
and
g00ðxiÞ ¼
gðxiþ1Þ�gðxiÞ

hiþ1
� gðxiÞ�gðxi�1Þ

hi

hiþhiþ1
2

þ 2
hi þ hiþ1

�hi;1

hi
½g0�g þ

h2
i;1

2hi
½g00�g

 !
þ OðhiÞ þ Oðhiþ1 � hiÞ þ Oðh2

i þ h2
iþ1Þ: ð11Þ
Case 3: For g 2 ðxi; xiþ1Þ, we construct the auxiliary function ~~g on ½xi�1; xiþ1� in the following way:
~~gðxÞ ¼
gðxÞ; x 2 ½xi�1;g�;
gðxÞ � ðx� gÞ½g0�g � 1

2 ðx� gÞ2½g00�g � 1
6 ðx� gÞ3½g000�g; x 2 ½g; xiþ1�:

(
ð12Þ
From the fact that ~~gðxÞ 2 C3½xi�1; xiþ1�, we obtain the approximations of ~~g0ðxiÞ and ~~g00ðxiÞ – (5)–(7) with g replaced by ~~g. The
construction of ~~g in (12) gives that
~~gðxiÞ ¼ gðxiÞ; ~~g0ðxiÞ ¼ g0ðxiÞ; ~~g00ðxiÞ ¼ g00ðxiÞ; ~~gðxi�1Þ ¼ gðxi�1Þ;
and
~~gðxiþ1Þ ¼ gðxiþ1Þ � hi;2½g0�g �
h2

i;2

2
½g00�g �

h3
i;2

6
½g000�g;
where hi;2 ¼ xiþ1 � g. Inserting these expressions into the approximate forms of ~~g0ðxiÞ and ~~g0ðxiÞ – (5)–(7) with g replaced by ~~g,
we obtain that
g0ðxiÞ ¼
gðxiþ1Þ � gðxiÞ

hiþ1
� hi;2

hiþ1
½g0�g þ Oðhiþ1Þ ð13Þ
or
g0ðxiÞ ¼
gðxiþ1Þ � gðxi�1Þ

hi þ hiþ1
� hi;2

hi þ hiþ1
½g0�g þ Oðhi þ hiþ1Þ þ Oðhiþ1 � hiÞ þ O h2

i þ h2
iþ1

� �
; ð14Þ
and
g0ðxiÞ ¼
gðxiþ1Þ�gðxiÞ

hiþ1
� gðxiÞ�gðxi�1Þ

hi

hiþhiþ1
2

� 2
hi þ hiþ1

hi;2

hiþ1
½g0�g þ

h2
i;2

2hiþ1
½g00�g

 !
þ Oðhiþ1Þ þ Oðhiþ1 � hiÞ þ O h2

i þ h2
iþ1

� �
: ð15Þ
Case 4: For g ¼ xi, we consider the approximations of the left and the right derivatives. To do that we only need to simply
modify the formulas in Case 2 and Case 3. With the definition of ~gðxÞ in (8), we know that ~g0ðxiÞ ¼ g0ðxiþÞ and ~g00ðxiÞ ¼ g0ðxiþÞ.
Then we have
g0ðxiþÞ ¼
gðxiÞ � gðxi�1Þ

hi
þ ½g0�g þ OðhiÞ ð16Þ
or
g0ðxiþÞ ¼
gðxiþ1Þ � gðxi�1Þ

hi þ hiþ1
þ hi

hi þ hiþ1
½g0�g þ Oðhi þ hiþ1Þ þ Oðhiþ1 � hiÞ þ O h2

i þ h2
iþ1

� �
; ð17Þ
and
g00ðxiþÞ ¼
gðxiþ1Þ�gðxiÞ

hiþ1
� gðxiÞ�gðxi�1Þ

hi

hiþhiþ1
2

þ 2
hi þ hiþ1

�½g0�g þ
hi

2
½g0�g

� �
þ OðhiÞ þ Oðhiþ1 � hiÞ þ O h2

i þ h2
iþ1

� �
: ð18Þ
Similarly the definition of eeg ðxÞ in (12) gives that eeg 0ðxiÞ ¼ g0ðxi�Þ and eeg 00ðxiÞ ¼ g00ðxi�Þ. Then this leads to
g0ðxi�Þ ¼
gðxiþ1Þ � gðxi�1Þ

hi þ hiþ1
� hiþ1

hi þ hiþ1
½g0�g þ Oðhi þ hiþ1Þ þ Oðhiþ1 � hiÞ þ O h2

i þ h2
iþ1

� �
; ð19Þ
and
g00ðxi�Þ ¼
gðxiþ1Þ�gðxiÞ

hiþ1
� gðxiÞ�gðxi�1Þ

hi

hiþhiþ1
2

� 2
hi þ hiþ1

½g0�g þ
hiþ1

2
½g00�g

� �
þ Oðhiþ1Þ þ Oðhiþ1 � hiÞ þ O h2

i þ h2
iþ1

� �
: ð20Þ
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2.2. Algorithm

To apply moving mesh methods, we use a time-dependent coordinate transformation to write Eq. (1) into the following
form:
_u� ux _x� uxx ¼ dðx� x0ÞFðuðx0; tÞÞ; ð21Þ
where x0 ¼ x0ðtÞ. Since when x – x0 the right-hand side vanishes, we conduct discretizations on equation
_u� ux _x� uxx ¼ 0: ð22Þ
The approximations of terms on the left-hand side of the above equation are based on the information of jumps which can be
calculated by the known functions x0 and F. Thereby the right-hand side of Eq. (21) is actually involved in the numerical
scheme.

In the following, we will calculate the jumps of terms ut ;ux; _u at x ¼ x0ðtÞ. Since the original equation (1) becomes heat
equation when x – x0, we conclude that u is continuous in the whole domain and smooth with x – x0. While at ðx0ðtÞ; tÞ,
the jumps are given by
½u�ðx0ðtÞ;tÞ ¼ 0; ½ux�ðx0ðtÞ;tÞ ¼ �Fðuðx0ðtÞ; tÞÞ: ð23Þ
The jump of directional derivative of uðx; tÞ along the vector ðx00ðtÞ;1Þ is zero, i.e.
½ux�ðx0ðtÞ;tÞx
0
0ðtÞ þ ½ut �ðx0ðtÞ;tÞ ¼ 0: ð24Þ
This gives that
½ut�ðx0ðtÞ;tÞ ¼ �x00ðtÞ½ux�ðx0ðtÞ;tÞ:
Combining with (1) and (23), we obtain that
½uxx�ðx0ðtÞ;tÞ ¼ ½ut �ðx0ðtÞ;tÞ ¼ x00ðtÞFðuðx0ðtÞ; tÞÞ; ð25Þ
and for the function _uðx; tÞ of ðx; tÞ,
½ _u�ðx0ðtÞ;tÞ ¼ ½ut þ ux _x�ðx0ðtÞ;tÞ ¼ ½ut�ðx0ðtÞ;tÞ þ _x½ux�ðx0ðtÞ;tÞ ¼ ðx
0
0ðtÞ � _xÞFðuðx0ðtÞ; tÞÞ: ð26Þ
Remark 2.1. Let �t satisfy that xð�tÞ ¼ x0ð�tÞ. Then we have
t½ _u��t ¼ r½ _u�ðx0ð�tÞ;�tÞ: ð27Þ
where t ½ _u��t is the jump of _uðxðtÞ; tÞ (single-variable function) at �t, and ½ _u�ðx0ð�tÞ;�tÞ is the jump of _uðx; tÞ (two-variables function) at
ðx0ð�tÞ;�tÞ;
r ¼
1; xðtÞ crosses x0ðtÞ from left-hand side to the right as t increasing ðFig:2 ðLeftÞÞ;
�1; xðtÞ crosses x0ðtÞ from right-hand side to the left as t increasing ðFig:2 ðRightÞÞ:

�

This relation (27) will be used in the discussions of Case 4 and Case 5 from below.

Now we are in a position to describe the moving mesh algorithm. The moving meshes fxn
j g for all available spatial mesh

node index j and temporal index n are obtained by solving the MMPDE6 (see e.g. in [7])
@2 _x

@n2 ¼ �
1
s
@

@n
M
@x
@n

� �
; ð28Þ
where M is the monitor function. The selection of monitor function is generally problem-dependent. For simulation of blow-
up, it is simple and efficient to utilize polynomial-type monitor function, see e.g. in [4,6,12]. As mentioned in the introduc-
tion, only if the moving speed of the source term is sufficiently slow, the blowup can occur. For our problems, we particularly
design monitors functions to make the moving meshes adapt with the solutions and the moving source as well. More pre-
cisely, we utilize monitor function of the form
Mðx; tÞ ¼ aup þ ð1� aÞððx� x0ðtÞÞ2 þ �Þ�1=4
for simulation of blowup in our problem and use the gradient-based monitor function
Mðx; tÞ ¼ a
@u
@x

���� ����þ ð1� aÞððx� x0ðtÞÞ2 þ �Þ�1=4
for non-blowup case. The choice of the constants p > 0;0 < �� 1;0 < a < 1 will be discussed in the concrete examples in
Section 3.
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The moving mesh algorithm for solving the transformed equation (21) is based on the approximations of the involved
terms on moving meshes, which are described by the following cases. The underlying ideas are given in the aforementioned
section.

Case 1 (see Fig. 3 (the 1st one)): If x0ðtÞ does not pass through xnþ1
j�1 ; x

nþ1
jþ1

� �
and xn

j ; x
nþ1
j

� �
, the approximations are given as

follows. The approximation of _u xnþ1
j ; tnþ1

� �
is defined by
Fig. 2.
increas
_uðxnþ1
j ; tnþ1Þ �

unþ1
j � un

j

tnþ1 � tn
; ð29Þ
where ftng; ðn ¼ 0;1; . . .Þ are temporal meshes and un
j � uðxn

j ; tnÞ. The approximation of uxðxnþ1
j ; tnþ1Þ is provided by
ux xnþ1
j ; tnþ1

� �
�

unþ1
jþ1 � unþ1

j�1

hnþ1
j þ hnþ1

jþ1

; ð30Þ
where
hn
j ¼ xn

j � xn
j�1:
The approximation of uxxðxnþ1
j ; tnþ1Þ is given by
uxx xnþ1
j ; tnþ1

� �
�

unþ1
jþ1
�unþ1

j

hnþ1
jþ1

�
unþ1

j
�unþ1

j�1

hnþ1
j

hnþ1
j þhnþ1

jþ1
2

: ð31Þ
Case 2 (see Fig. 3 (the 2nd one)): If x0ðtÞ passes through xnþ1
j�1 ; x

nþ1
j

� �
, then ux xnþ1

j ; tnþ1

� �
and uxx xnþ1

j ; tnþ1

� �
are approximated

by
ux xnþ1
j ; tnþ1

� �
�

unþ1
jþ1 � unþ1

j�1

hnþ1
j þ hnþ1

jþ1

þ
hnþ1

j;1

hnþ1
j þ hnþ1

jþ1

½ux�ðx0ðtnþ1Þ;tnþ1Þ ¼
unþ1

jþ1 � unþ1
j�1

hnþ1
j þ hnþ1

jþ1

þ
hnþ1

j;1

hnþ1
j þ hnþ1

jþ1

ð�Fðuðx0ðtnþ1Þ; tnþ1ÞÞÞ; ð32Þ
where
hnþ1
j;1 ¼ x0ðtnþ1Þ � xnþ1

j�1 ;
and
uxx xnþ1
j ; tnþ1

� �
�

unþ1
jþ1
�unþ1

j

hnþ1
jþ1

�
unþ1

j
�unþ1

j�1

hnþ1
j

hnþ1
j þhnþ1

jþ1
2

þ 2

hnþ1
j þ hnþ1

jþ1

�
hnþ1

j;1

hnþ1
j

½ux�ðx0ðtnþ1Þ;tnþ1Þ þ
hnþ1

j;1

� �2

2hnþ1
j

½uxx�ðx0ðtnþ1Þ;tnþ1Þ

0B@
1CA

¼

unþ1
jþ1
�unþ1

j

hnþ1
jþ1

�
unþ1

j
�unþ1

j�1

hnþ1
j

hnþ1
j þhnþ1

jþ1
2

þ 2

hnþ1
j þ hnþ1

jþ1

�
hnþ1

j;1

hnþ1
j

ð�Fðuðx0ðtnþ1Þ; tnþ1ÞÞÞ þ
hnþ1

j;1

� �2

2hnþ1
j

x00ðtnþ1ÞFðuðx0ðtnþ1Þ; tnþ1ÞÞ
� 	0B@

1CA:
ð33Þ
Since term Fðuðx0ðtnþ1Þ; tnþ1ÞÞ in the approximate forms (32) and (33) contains an unknown function value uðx0ðtnþ1Þ; tnþ1Þ,
linear interpolation is used to evaluate it –
uðx0ðtnþ1Þ; tnþ1Þ �
xnþ1

j � x0ðtnþ1Þ
xnþ1

j � xnþ1
j�1

unþ1
j�1 þ

x0ðtnþ1Þ � xnþ1
j�1

xnþ1
j � xnþ1

j�1

unþ1
j � ~uðx0ðtnþ1Þ; tnþ1Þ: ð34Þ
t

)(0 tx )(tx

x

t

)(tx )(0 tx

x

Left figure: xðtÞ crosses x0ðtÞ from left-hand side to the right as t increasing; right figure: xðtÞ crosses x0ðtÞ from right-hand side to the left as t
ing.
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Fig. 3. Illustration figure for Cases 1–3 (from left to right).
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Therefore, the final forms of approximations are
ux xnþ1
j ; tnþ1

� �
�

unþ1
jþ1 � unþ1

j�1

hnþ1
j þ hnþ1

jþ1

þ
hnþ1

j;1

hnþ1
j þ hnþ1

jþ1

ð�Fð~uðx0ðtnþ1Þ; tnþ1ÞÞÞ;
and
uxx xnþ1
j ; tnþ1

� �
�

unþ1
jþ1
�unþ1

j

hnþ1
jþ1

�
unþ1

j
�unþ1

j�1

hnþ1
j

hnþ1
j þhnþ1

jþ1
2

þ 2

hnþ1
j þ hnþ1

jþ1

�
hnþ1

j;1

hnþ1
j

ð�Fð~uðx0ðtnþ1Þ; tnþ1ÞÞÞ þ
ðhnþ1

j;1 Þ
2

2hnþ1
j

ðx00ðtnþ1ÞFð~uðx0ðtnþ1Þ; tnþ1ÞÞÞ
 !

:

ð35Þ
Case 3 (see Fig. 3 (the 3rd one)): In the case x0ðtÞ passes through xnþ1
j ; xnþ1

jþ1

� �
, let
uðx0ðtnþ1Þ; tnþ1Þ �
xnþ1

jþ1 � x0ðtnþ1Þ
xnþ1

jþ1 � xnþ1
j

unþ1
j þ

x0ðtnþ1Þ � xnþ1
j

xnþ1
jþ1 � xnþ1

j

unþ1
jþ1 � ~~uðx0ðtnþ1Þ; tnþ1Þ: ð36Þ
Then the approximations of ux xnþ1
j ; tnþ1

� �
and uxx xnþ1

j ; tnþ1

� �
are given by
ux xnþ1
j ; tnþ1

� �
�

unþ1
jþ1 � unþ1

j�1

hnþ1
j þ hnþ1

jþ1

�
hnþ1

j;2

hnþ1
j þ hnþ1

jþ1

½ux�ðx0ðtnþ1Þ;tnþ1Þ �
unþ1

jþ1 � unþ1
j�1

hnþ1
j þ hnþ1

jþ1

�
hnþ1

j;2

hnþ1
j þ hnþ1

jþ1

ð�Fð~~uðx0ðtnþ1Þ; tnþ1ÞÞÞ; ð37Þ
where hnþ1
j;2 ¼ xnþ1

jþ1 � x0ðtnþ1Þ, and
uxx xnþ1
j ; tnþ1

� �
�

unþ1
jþ1
�unþ1

j

hnþ1
jþ1

�
unþ1

j
�unþ1

j�1

hnþ1
j

hnþ1
j þhnþ1

jþ1
2

� 2

hnþ1
j þ hnþ1

jþ1

hnþ1
j;2

hnþ1
j

½ux�ðx0ðtnþ1Þ;tnþ1Þ þ
ðhnþ1

j;2 Þ
2

2hnþ1
j

½uxx�ðx0ðtnþ1Þ;tnþ1Þ

 !

�

unþ1
jþ1
�unþ1

j

hnþ1
jþ1

�
unþ1

j
�unþ1

j�1

hnþ1
j

hnþ1
j þhnþ1

jþ1
2

� 2

hnþ1
j þ hnþ1

jþ1

hnþ1
j;2

hnþ1
j

ð�Fð~~uðx0ðtnþ1Þ; tnþ1ÞÞÞ þ
ðhnþ1

j;2 Þ
2

2hnþ1
j

ðx00ðtnþ1ÞFð~~uðx0ðtnþ1Þ; tnþ1ÞÞÞ
 !

:

ð38Þ
Case 4 (see Fig. 4): Assume that x0ðtÞ intersects with xn
j ; x

nþ1
j

� �
at t ¼ �t. Then
_u xnþ1
j ; tnþ1

� �
¼

uðxnþ1
j ; tnþ1Þ � uðxn

j ; tnÞ
tnþ1 � tn

þ
�t � tn

tnþ1 � tnt
½ _u��t þ Oðtnþ1 � tnÞ

¼
u xnþ1

j ; tnþ1

� �
� uðxn

j ; tnÞ
tnþ1 � tn

þ r
�t � tn

tnþ1 � tn
½ _u�ðx0ð�tÞ;�tÞ þ Oðtnþ1 � tnÞ;
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Fig. 4. Illustration figure for Case 4.
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where t½ _u��t and r are defined as in Remark 2.1. Therefore, _u xnþ1
j ; tnþ1

� �
, with the calculation of jump ½ _u� (26), is approximated

by
_u xnþ1
j ; tnþ1

� �
�

unþ1
j � un

j

tnþ1 � tn
þ r

�t � tn

tnþ1 � tn
ðx00ð�tÞ � _xð�tÞÞFðuðx0ð�tÞ;�tÞÞ: ð39Þ
On ½tn; tnþ1�; xðtÞ is given by
xðtÞ ¼ tnþ1 � t
tnþ1 � tn

xn
j þ

t � tn

tnþ1 � tn
xnþ1

j : ð40Þ
Therefore, _xðtÞ is computed by
_xðtÞ ¼
xnþ1

j � xn
j

tnþ1 � tn
:

uðx0ð�tÞ;�tÞ is approximated by
uðx0ð�tÞ;�tÞ �
tnþ1 � �t
tnþ1 � tn

un
j þ

�t � tn

tnþ1 � tn
unþ1

j � �uðx0ð�tÞ;�tÞ:
Therefore, the final form of approximation is given by
_u xnþ1
j ; tnþ1

� �
�

unþ1
j � un

j

tnþ1 � tn
þ r

�t � tn

tnþ1 � tn
x00ð�tÞ �

xnþ1
j � xn

j

tnþ1 � tn

 ! !
Fð�uðx0ð�tÞ;�tÞÞ: ð41Þ
Case 5 (see Fig. 5): For the case that x0ðtnþ1Þ ¼ xnþ1
j , the approximate schemes for the terms in (22) and the moving mesh

algorithms are discussed in the following situations – (a) and (b).

(a) For the situation in Fig. 5 (left), we evaluate (22) at xnþ1
j þ; tnþ1�

� �
. The approximations of the terms have the forms:
_u xnþ1
j þ; tnþ1�

� �
�

unþ1
j � un

j

tnþ1 � tn
;

ux xnþ1
j þ; tnþ1�

� �
�

unþ1
jþ1 � unþ1

j�1

hnþ1
j þ hnþ1

jþ1

þ
hnþ1

j

hnþ1
j þ hnþ1

jþ1

½ux�ðx0ðtnþ1Þ;tnþ1Þ;

uxx xnþ1
j þ; tnþ1�

� �
�

unþ1
jþ1
�unþ1

j

hnþ1
jþ1

�
unþ1

j
�unþ1

j�1

hnþ1
j

hnþ1
j þhnþ1

jþ1
2

þ 2

hnþ1
j þ hnþ1

jþ1

�½ux�ðx0ðtnþ1Þ;tnþ1Þ þ
hnþ1

j

2
½uxx�ðx0ðtnþ1Þ;tnþ1Þ

 !
:

Inserting these expressions into (22) we obtain a scheme for computing unþ1
j :

0 ¼
unþ1

j � un
j

tnþ1 � tn
�

unþ1
jþ1 � unþ1

j�1

hnþ1
j þ hnþ1

jþ1

þ
hnþ1

j

hnþ1
j þ hnþ1

jþ1

½ux�ðx0ðtnþ1Þ;tnþ1Þ

 !
xnþ1

j � xn
j

tnþ1 � tn

�

unþ1
jþ1
�unþ1

j

hnþ1
jþ1

�
unþ1

j
�unþ1

j�1

hnþ1
j

hnþ1
j þhnþ1

jþ1
2

þ 2

hnþ1
j þ hnþ1

jþ1

�½ux�ðx0ðtnþ1Þ;tnþ1Þ þ
hnþ1

j

2
½uxx�ðx0ðtnþ1Þ;tnþ1Þ

 !0BB@
1CCA: ð42Þ

Alternatively we can evaluate (22) at xnþ1
j �; tnþ1þ

� �
. The approximations are given by

_u xnþ1
j �; tnþ1þ

� �
�

unþ1
j � un

j

tnþ1 � tn
þt½ _u�tnþ1

¼
unþ1

j � un
j

tnþ1 � tn
� ½ _u�ðx0ðtnþ1Þ;tnþ1Þ;
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Fig. 5. Illustration figure for Case 5.
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ux xnþ1
j �; tnþ1þ

� �
�

unþ1
jþ1 � unþ1

j�1

hnþ1
j þ hnþ1

jþ1

�
hnþ1

jþ1

hnþ1
j þ hnþ1

jþ1

½ux�ðx0ðtnþ1Þ;tnþ1Þ;

uxx xnþ1
j �; tnþ1þ

� �
�

unþ1
jþ1
�unþ1

j

hnþ1
jþ1

�
unþ1

j
�unþ1

j�1

hnþ1
j

hnþ1
j þhnþ1

jþ1
2

� 2

hnþ1
j þ hnþ1

jþ1

½ux�ðx0ðtnþ1Þ;tnþ1Þ þ
hnþ1

jþ1

2
½uxx�ðx0ðtnþ1Þ;tnþ1Þ

 !
:

Inserting these expressions into (22) yields another scheme for computing unþ1
j :

0 ¼
unþ1

j � un
j

tnþ1 � tn
� ½ _u�ðx0ðtnþ1Þ;tnþ1Þ �

unþ1
jþ1 � unþ1

j�1

hnþ1
j þ hnþ1

jþ1

�
hnþ1

jþ1

hnþ1
j þ hnþ1

jþ1

½ux�ðx0ðtnþ1Þ;tnþ1Þ

 !
xnþ1

j � xn
j

tnþ1 � tn

�

unþ1
jþ1
�unþ1

j

hnþ1
jþ1

�
unþ1

j
�unþ1

j�1

hnþ1
j

hnþ1
j þhnþ1

jþ1
2

� 2

hnþ1
j þ hnþ1

jþ1

½ux�ðx0ðtnþ1Þ;tnþ1Þ þ
hnþ1

jþ1

2
½uxx�ðx0ðtnþ1Þ;tnþ1Þ

 !0BB@
1CCA: ð43Þ

Using (40) and subtracting the right-hand side of (43) from that of (42) give that

½ _u� � ½ux� _x� ½uxx� ¼ ½ut � � ½uxx� ¼ 0;

where we have used (25) in the second equality. Hence we can use either (42) or (43) to compute unþ1
j . Therefore,

using the following equalities:

½ux� ¼ �Fðuðx0ðtnþ1Þ; tnþ1ÞÞ ¼ �F uðxnþ1
j ; tnþ1Þ

� �
� �F unþ1

j

� �
;

and

½uxx� ¼ x00ðtnþ1ÞFðuðx0ðtnþ1Þ; tnþ1ÞÞ ¼ x00ðtnþ1ÞF uðxnþ1
j ; tnþ1Þ

� �
� x00ðtnþ1ÞF unþ1

j

� �
;

into (42) yields the final scheme for Case 5 (Fig. 5 (left)) –

0 ¼
unþ1

j � un
j

tnþ1 � tn
�

unþ1
jþ1 � unþ1

j�1

hnþ1
j þ hnþ1

jþ1

þ
hnþ1

j

hnþ1
j þ hnþ1

jþ1

�F unþ1
j

� �� � !
xnþ1

j � xn
j

tnþ1 � tn
�

unþ1
jþ1
�unþ1

j

hnþ1
jþ1

�
unþ1

j
�unþ1

j�1

hnþ1
j

hnþ1
j þhnþ1

jþ1
2

� 2

hnþ1
j þ hnþ1

jþ1

F unþ1
j

� �
þ

hnþ1
j

2
x00ðtnþ1ÞF unþ1

j

� �� � !
: ð44Þ
(b) Similarly, for the situation in Fig. 5 (right), we can verify that the moving mesh algorithm based on the approximations
at point xnþ1

j �; tnþ1�
� �

is identical to that at point xnþ1
j þ; tnþ1þ

� �
. The moving mesh algorithm for Fig. 5 (right) is

thereby given by
0 ¼
unþ1

j � un
j

tnþ1 � tn
�

unþ1
jþ1 � unþ1

j�1

hnþ1
j þ hnþ1

jþ1

�
hnþ1

jþ1

hnþ1
j þ hnþ1

jþ1

�F unþ1
j

� �� � !
xnþ1

j � xn
j

tnþ1 � tn
�

unþ1
jþ1
�unþ1

j

hnþ1
jþ1

�
unþ1

j
�unþ1

j�1

hnþ1
j

hnþ1
j þhnþ1

jþ1
2

þ 2

hnþ1
j þ hnþ1

jþ1

�F unþ1
j

� �
þ

hnþ1
jþ1

2
x00ðtnþ1ÞF unþ1

j

� �� � !
: ð45Þ
Now it is ready to present the final form of moving mesh algorithm.

Algorithm 1. Given that the solution and mesh at tn level – fun
j ; x

n
j g, we compute the solution and mesh at tnþ1 level –

funþ1
j ; xnþ1

j g by the following steps.

Step 1: Solve the physical equation (1) at fixed mesh fxn
j g over ½tn; tnþ1� by a scheme constructed by an analogous approach

as discussed from above. The computational solution eunþ1
j is used to solve the MMPDE6 (28) in the next step.

Step 2: Solve the MMPDE6 (28) by
�s
xnþ1

jþ1 � 2xnþ1
j þ xnþ1

j�1

� �
� xn

jþ1 � 2xn
j þ xn

j�1

� �
Dtn

¼
M ~unþ1

j

� �
þM ~unþ1

jþ1

� �
2

ðxnþ1
jþ1 � xnþ1

j Þ �
M ~unþ1

j�1

� �
þM ~unþ1

j

� �
2

xnþ1
j � xnþ1

j�1

� �
:

ð46Þ



Step 3: Solve the transformed equation (21) using
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Approxð _uÞ � ApproxðuxÞ
xnþ1

j � xn
j

tnþ1 � tn
� ApproxðuxxÞ ¼ 0; ð47Þ

where the approximations of each terms at point xnþ1
j ; tnþ1

� �
have particular forms according to the different cases –

Case 1, Case 2, Case 3, Case 4; for Case 5 using (44) or (45).
3. Numerical examples

We will use the first example to examine the convergence rate of Algorithm 1. In the other three examples, we simulate
the blowup using Algorithm 1.

Example 3.1. We consider
ut � uxx ¼ dðx� x0ÞFðuðx0; tÞÞ; �10 6 x 6 10; t > 0; ð48Þ

uðx; 0Þ ¼ cos2ðpx=2Þ; �1 < x < 1;
0; �10 6 x 6 �1 or 1 6 x 6 10;

(
ð49Þ

uð�10; tÞ ¼ uð10; tÞ ¼ 0; ð50Þ
with
FðuÞ ¼ 1þ u2; x 2 ð�10;10Þ; x0ðtÞ ¼ 2t:
In the following, we test the convergence properties of Algorithm 1. For time we use the following graded mesh
tn : tn ¼
n
L

� �2
;n ¼ 0;1; . . . ; L

� 

;

where L is the number of temporal meshes. For space we consider three kinds of spatial meshes – uniform meshes, adaptive
graded meshes and MMPDE6 moving meshes.

3.1. Adaptively graded meshes

At tn, we define a coordinate transformation
n ¼ CðxÞ ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0ðtnÞ � x

p
; �10 6 x < x0ðtnÞ;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x� x0ðtnÞ
p

; x0ðtnÞ 6 x < 10:

(

Let
nj ¼ Cð�10Þ þ j� Cð10Þ � Cð�10Þ
N

; j ¼ 0;1; . . . ;N:
Then the adaptively graded mesh nodes at time tn are given by
xn
j ¼ C�1ðnjÞ; j ¼ 0;1; . . . ;N; ð51Þ
(see Fig. 6).
Note that the above adaptively graded meshes satisfy the following properties:

1. The spatial meshsize satisfies maxfhn
j ;h

n
jþ1g ¼ Oð1=N2Þ if x0ðtnÞ 2 ½xn

j�1; x
n
jþ1�.
Fig. 6. Adaptively graded mesh.
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2. The spatial meshsize satisfies hn
j � hn

j�1 ¼ Oð1=N2Þ.

From the way of constructing our scheme – (47), it is not difficult to see that the truncation error (Trun-Err) is bounded by
Table 1
Error an

Uniform
N, L
eN;L

e2N;4L=e

Adaptiv
N, L
eN;L

e2N;4L=e

MMPDE
N, L
eN;L

e2N;4L=e
jTrun-Errj 6
C max hnþ1

jþ1 � hnþ1
j ; ðhnþ1

jþ1 Þ
2 þ ðhnþ1

j Þ2;Dt
n o

; if x0ðtnþ1Þ R xnþ1
j�1 ; x

nþ1
jþ1

h i
;

C max hnþ1
jþ1 þ hnþ1

j ;Dt
n o

; if x0ðtnþ1Þ 2 xnþ1
j�1 ; x

nþ1
jþ1

h i
:

8><>:

Therefore the truncation error is proportional to Oðmaxð1=N2;DtÞÞ if the adaptive graded meshes are used, and we thus can
expect a second-order convergence for space.

3.2. MMPDE6 moving meshes

The meshes are generated by the MMPDE6 with the parameter s ¼ 10�3 and monitor function of the form
M ¼ a
@u
@x

���� ����þ ð1� aÞððx� x0ðtÞÞ2 þ �Þ�1=4
;

with e.g. a ¼ 0:1 and � ¼ 103=N4. The user-defined a balances the effects of the gradient of the solution and the interface x0 to
the movement of the meshes. Another value of a might work as well. In particular choosing suitable form of time-dependent
a might be more promising. Since the exact solution is not available, to test the convergence, we need to define the measure-
ment of the error. Let uN;Lðx; tnÞ denote the numerical solution at time tn with number of space meshes N and number of time
meshes L. Our desired convergence rate is second-order, namely,
max
n
kuðx; tnÞ � uN;Lðx; tnÞk1 6 CN�2:
Therefore,
eN;L �max
n
kuN;Lðx; tnÞ � u2N;2Lðx; tnÞk1 6 max

n
kuðx; tnÞ � uN;Lðx; tnÞk1 þmax

n
kuðx; tnÞ � u2N;2Lðx; tnÞk1 6 CN�2; ð52Þ
and
e2N;4L

eN;L
� ð2NÞ�2

N�2 ¼ 0:25: ð53Þ
The computational numerics are listed in Table 1 which confirms that using adaptive meshes is more accurate than using
fixed (uniform) meshes and the convergence rate is second-order.

The figures of solutions and mesh trajectories obtained by the use of MMPDE6 moving meshes are plotted in Fig. 7. It is
shown that there is no blowup (see Fig. 7). This means that with the traveling speed of the heat source x00ðtÞ ¼ 2, the heat
source is continuously being exposed to relatively cool surroundings and thereby the supplied heat is diffused in large ex-
tent, hence the blowup is prevented (see e.g. [13] for the mathematical theory).

Example 3.2. We consider the same problem as in Example 3.1 except that x0ðtÞ is given by
x0ðtÞ ¼ kt; k ¼ 0;1:
During the solution process, we choose the integration time step Dtn ¼ tnþ1 � tn as
Dtn ¼
l

max
ðjÞ

un
j

n o� �2 ; ð54Þ
d convergence rates.

meshes
25, 25 50, 100 100, 400 200, 1600 400, 6400 800, 25,600
8.2208e�2 4.4597e�2 3.0513e�2 1.9829e�2 1.1421e�2 –

N;L 0.54249 0.68418 0.64986 0.57600 – –

ely graded meshes
25, 25 50, 100 100, 400 200, 1600 400, 6400 800, 25,600
2.8765e�2 6.2424e�3 1.5792e�3 4.0319e�4 1.0127e�4 –

N;L 0.21701 0.25298 0.25530 0.25483 – –

6 moving meshes
25, 25 50, 100 100, 400 200, 1600 400, 6400 800, 25,600
3.8107e�2 9.0647e�3 2.5573e�3 6.9194e�4 1.7949e�4 –

N;L 0.23786 0.28212 0.27057 0.25940 – –
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where l is a small positive constant. (54) is actually a discrete version of Sundman transformation which has been widely
used to study blowup problems e.g. in [1,5,12].

In the test, the number of spatial mesh points is N ¼ 100; the parameter s in MMPDE6 is given by s ¼ 5� 10�4 and l in
the time-step formula is set by l ¼ 10�3. The monitor function is taken as
1

1

2

2

u

Fig. 9.

−
0
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15

20

25

30

u

Fig. 8.
Mðx; tÞ ¼ au2 þ ð1� aÞððx� x0ðtÞÞ2 þ �Þ�1=4
;

with e.g. a ¼ 0:5 and � ¼ 10�5. For k ¼ 0, namely, x0ðtÞ � 0, the blowup time associated with the maximum value of solution
umax ¼ 1:1� 106 is 1.074623052402. The blowup profiles in both physical and computational variables and the evolving
mesh are plotted in Fig. 8. The red line in the mesh figure is the figure for x0. For k ¼ 1, i.e., x0ðtÞ ¼ t, the blowup time for
the maximum value of solution umax ¼ 2:9� 106 is 1.460099559450. The figures are shown in Fig. 9. We can see from the
figures that for x0ðtÞ � 0 the blowup occurs at x ¼ 0, while for x0ðtÞ ¼ t at x ¼ 1:460099559450. This is consistent with
the blowup theory in [13] where blowup occurs at x	 ¼ x0ðTÞ (T is the blowup time).

Example 3.3. We now consider periodic motion of the heat source which is analyzed in [9]. We simulate the blowup for the
problem with the same conditions as in Example 3.2 except that x0ðtÞ ¼ A sinðptÞ with e.g. A ¼ 1;2.

The numerical results are presented in Fig. 10 for x0ðtÞ ¼ sinðptÞ and Fig. 11 for x0ðtÞ ¼ 2 sinðptÞ. The blowup time for
x0ðtÞ ¼ sinðptÞ is 2.104579096179 and for x0ðtÞ ¼ 2 sinðptÞ is 4.760652758628. This obviously shows that the blowup time
increases with increasing amplitude A which is consistent with the analytical results in [9].
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Figures for blowup profiles in physical variable and computational variable and for evolving mesh (from left to right) for Example 3.2 with x0ðtÞ ¼ t.
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Figures for blowup profiles in physical variable and computational variable and for evolving mesh (from left to right) for Example 3.2 with x0ðtÞ ¼ 0.
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Fig. 7. Figures for non-blowup solutions and evolving mesh (from left to right) for Example 3.1 with x0ðtÞ ¼ 2t.
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Fig. 12. Figures for blowup profiles in physical variable and computational variable and for evolving mesh (from left to right) for Example 3.4.
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ð tÞ ¼sinð pt Þ .
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Example 3.4. We consider the common problem to the above with rapid deceleration of the motion
000000000
x0ðtÞ ¼ expð�tÞ:
We plot the results in Fig. 12. The blowup time is 1.458583253409 for maximum value of solution umax ¼ 8:9� 105.
4. Conclusions

In this paper we have studied a reaction–diffusion equation with nonlinear traveling heat source where the blowup oc-
curs with sufficiently low-speed motion for the heat source. We successfully simulated the blowup and non-blowup phe-
nomena using a carefully designed moving mesh algorithm. We generated the interesting figures for blowup profiles
which are quite different from those in the literatures (e.g. in [4,2,15,17,6,12]). In the future, we hope to extend the approach
to two-dimensional problems (see in [10]) and blowup problems with two moving heat sources (see e.g. in [8]).
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